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Abstract 

In o rde r  to apply  di rect  m e t h o d s  rou t ine ly  to 
macromolecular crystals it will be necessary to gener- 
ate a non-atomic theory which is applicable to con- 
tinuous densities. Reformulation of the 'phase prob- 
lem' in terms of deconvoluting an autocorrelation 
function or Patterson synthesis reduces the problem 
from a theoretically intractable transcendental prob- 
lem to a system of simultaneous quadratic equations. 
These quadratic equations may, in principle, always 
be solved by conjugate direction search techniques. 
The phase problem is shown to be a class P problem, 
admitting a deterministic solution in polynomial time. 
Two algorithms are presented with running times 

2 proportional to Npoints and Npoints log Npoints per step. 
These algorithms are a pixel-by-pixel search and a 
conjugate gradients search. When the data are exact 
and complete the Fourier magnitudes are readily 
inverted by them to find the image. An example with 
real data, from a 15mer of DNA, is also shown. 

0108-7673/90/070606-14503.00 

Introduction 

The phase problem in crystallography occurs because 
it is only possible, in general, to measure the ampli- 
tude of the diffracted X-ray. A great deal of effort 
has gone into various methods for overcoming this 
problem. Experimental means like isomorphous 
replacement and anomalous scattering (Blow & 
Crick, 1959; Watenpaugh, 1985; Hendrickson, Smith 
& Sheriff 1985) for macromolecules, as well as theo- 
retical approaches like direct methods (Karle & 
Hauptman, 1950; Ladd & Palmer, 1980) for small 
molecules have been developed to find useable values 
for the phases. These have been successful, but the 
general solution to the phase problem has remained 
elusive. In particular, it has been very difficult to 
invert numerically the observed magnitudes and 
obtain the electrola density when the density neither 
is composed of a small number of atoms, nor diffracts 
to high resolution. This is typically the case with 
macromolecular structures. 

O 1990 International Union of Crystallography 



ROBERT W. HARRISON 607 

The central computational question in algorithm 
design is the complexity of the algorithm. For 
example, one could try all possible combinations of 
phases, and some of these would be correct enough 
to resolve the structure. The problem is that this 
literally could take forever. Generally, algorithms can 
be divided into two classes, P and NP. If the running 
time is proportionate to some finite polynomial of 
the number of unknowns the algorithm is a member 
of class P and runs in polynomial time. Otherwise, it 
runs in non-polynomial time and is a member of class 
NP. Class P is a desirable property because the run 
time of the program increases slowly with the number 
of unknowns. The only improvement over a class P 
algorithm with provable convergence is an analytical 
expression. It would be of interest to find an algorithm 
in class P which determines phases. 

Classically, the phase problem has been described 
as that of finding a positive electron density whose 
Fourier transform has the observed intensities. If the 
structure factors are normalized the problem may be 
stated in terms of atomic positions: Either way, this 
problem requires the solution of a large number of 
simultaneous transcendental equations. Direct 
methods attempt to do this by analytic expressions 
related to the probability of the phase of a reflection 
or of an invariant sum of phases (Hauptman, 1972; 
Karle, 1982). Direct iterative methods like the 
maximum-entropy method have had limited success 
at the solution of the transcendental system of 
equations (Harrison, 1989; Bricogne, 1984; Marvin, 
Bryan & Nave, 1987). Experimentally, measures of 
the change in the intensities of the structure factors 
when the structure is perturbed in a limited manner 
with a heavy atom have been used to deduce phases. 

The conventional direct approaches often work, 
and for small molecules do work very well. Computa- 
tionally, they try to solve a combinatorial optimiz- 
ation problem, which does not have an efficient 
deterministic solution (Ladd & Palmer, 1980). The 
complexity is at least exponential, placing them 
squarely in class NP. This arises because the optimiz- 
ation problem is one of simultaneous transcendental 
equations. Not only do these transcendental 
equations lack a rational inverse, they have multiple 
minima and multiple stationary points at non- 
minima. 

While the phase and magnitude representation of 
the scattered X-ray is physically and intuitively 
appealing it is not the only way that the scattering 
problem and its inverse can be treated. The intensities 
are a direct measure of the autocorrelation function 
or Patterson function of the electron density. The 
essential problem of crystallography is to find a 
bounded and physically realistic electron density 
which reproduces the observed autocorrelation func- 
tion. It is not required that this density be found via 
the Fourier magnitude and phase representation. It 

is shown that the autocorrelation function may be 
written as a mfiltidimensional quadratic problem 
which is, in principle, much easier to solve than the 
traditional transcendental one. 

In this paper three major points are developed. 
First, the failure of linear models of image degrada- 
tion to produce new phase information is demon- 
strated. This is not surprising given the orthogonality 
of the terms in the Fourier transform. Second, the 
difficulties in the construction of a conventional tech- 
nique are sketched. In particular, any method which 
only uses, either explicitly or implicitly, first deriva- 
tives or secants with respect to the phase as a measure 
of phase error will fail to resolve a mixture of enan- 
tiomorphs. Third, techniques for deconvoluting a Pat- 
terson are developed. This approach is a dual, or 
reformulated version, of the traditional phase prob- 
lem. It is a dual, because to solve the Patterson and 
find the image (and from that the phases), it is not 
necessary to use the phase variables or leave the set 
of real numbers. Deterministic algorithms with 
absolute convergence in polynomial time can be con- 
structed for deconvolution of the Patterson function. 
These algorithms can be implemented on both current 
serial computers and future parallel architectures. 
When the data are complete and exact, as in a two- 
dimensional test model, these algorithms recover the 
phases from the Fourier magnitudes. Some of the 
numerical issues involved in the practical 
implementation of these algorithms are developed. 
Although these have not all been resolved yet, some 
results are shown. 

The algebra of circulant matrices 

The mathematical development of this approach will 
depend on the properties of a class of matrices known 
as circulant matrices (Davis, 1979; Gonzalez & Wintz, 
1977). Because the eigenvectors of circulant matrices 
are the discrete Fourier transform, the algebra of these 
matrices forms an effective tool for the manipulation 
of Fourier transforms. Since the representation of an 
electron density map on a computer is always a dis- 
crete Fourier transform rather than a Fourier integral 
it is useful to develop the theory in terms of the 
computer representation. This section describes the 
basic properties of these matrices and their close 
relatives, circulant-block-block-circulant matrices. 

Definition 

A circulant matrix is a square matrix where all of 
the elements are present on any one row or column 
and each row is related to the next by a unit shift in 
index. A circulant-block-block-circulant (CBBC) is a 
matrix made of block circulant matrices where the 
block matrices are also arranged in circulant fashion. 
Such a matrix arises in two-dimensional problems. 
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Each row in a CBBC matrix is related to the two 
dimensions in the same way as a two-dimensional 
array is indexed in a computer language like Fortran. 
CBBC matrices may further be arranged in circulant 
fashion to form the equivalent matrix for a three- 
dimensional problem. Since these matrices have the 
same addition, multiplication and inverse properties 
they will all be referred to as circulants and the 
dimensionality will depend on the context. Since all 
of the rows in these matrices are related to the other 
rows by a permutation, only the storage needed to 
keep one row in memory is needed for a computer 
program. 

Eigenvectors  

Circulant matrices and their two- and three- 
dimensional generalizations have one major property 
which makes them useful. The eigenvectors of any 
circulant are equivalent to the Fourier transform 
(Davis, 1979; Gonzalez & Wintz, 1977). The eigen- 
values of the circulant can be found by the Fourier 
transform of the first row of the circulant: 

C,,. = F*.A,,,~F,,,, 

where C. .  is an n by n circulant, F. .  is the Fourier 
transform, and A..  is the n by n diagonal matrix of 
the eigenvalues. 

F. .  is a matrix which when multiplied by a vector 
results in the Fourier transform of the vector. This 
matrix is a symmetric unitary matrix and its inverse 
is simply its complex conjugate. The fast Fourier 
transform works by taking advantage of the structure 
of the matrix to find ways of taking the matrix product 
with fewer than n 2 multiplications (Winograd, 1978). 
F22 and F44 are shown below. 

1(1 
F 2 2 = ~  1 - 

 (11 :i) 1 1 i - 1  
F44= -1  1 " 

- i  - 1  

Addi t ion ,  mult ipl icat ion a n d  pseudo- inverses  

Addition of circulants is done in the same way as 
other matrices, each pair of elements being added to 
produce the corresponding element in the output. 
Since all the unique elements of a circulant are in 
one row or column, this need only be done for one 
row or column of the matrices. Multiplication could 
be done in the same way as usual, but it is possible 
to speed it up greatly by the use of the fast Fourier 
transform (FFT) (Davis, 1979; Gonzalez & Wintz, 
1977; Winograd, 1978). The circulants are first 

reduced to their eigenvalues, these are multiplied, 
and then the product is reconstructed with the inverse 
Fourier transform. 

C 1 2 ~ 2 . .  C . .  F * . A  l = ,,,, F . .F , , , ,A  ,,,,F,,,, 

2 = F * . A  '.,, A . . F . . .  

A matrix and an arbitrary vector may be quickly 
multiplied together by forming the circulant matrix 
with one row equal to the vector and using the FFT 
to multiply the two matrices. It should be noted that 
the above equations are also known as the convol- 
ution theorem and multiplication by a circulant 
results in a convolution. 

Since it is easy to find the eigenvalues of a circulant 
matrix, the inverse and Moore-Penrose pseudo- 
inverse may be found (Davis, 1979). From the 
equation above, if A ~ has elements which are the 
inverse of the elements of A 2 then C '  and C 2 are 
inverses. The inverse of a circulant is found by first 
calculating the eigenvalues, and then using the 
inverses of these to generate a new circulant. The 
pseudo-inverse is constructed by leaving as zero any 
of the elements of A which are zero, but using the 
inverse of the elements when they are not. The 
pseudo-inverse of a matrix C will be referred to as 
C ÷. When all the eigenvalues are non-zero then 
pseudo-inverse and inverse are identical, but the 
pseudo-inverse will be used as it is defined when some 
eigenvalues are zero (preventing calculation of an 
inverse), and automatically gives the least-squares 
solution in those cases. 

Linear image degradation models 

The conventional image processing problem will be 
described to show how circulants may be used. In 
image processing, an observed copy of a degraded 
image is restored by making a model of the degrada- 
tion process, and then using this model to enhance 
the image. The linear model for degradation will be 
developed and extended to the problem of missing 
phase information. The inability of the linear model 
to restore missing phase information will be shown. 

The degradation of an image can usually be 
described with a linear model. The observed image 
Pobs and the true image Pidea~ are related via the linear 
equation 

Pobs = Apidea!-4- n 

where A is a matrix (the degradation matrix) which 
describes the systematic distortion of the image and 
n is a vector which represents the added noise. Pro- 
vided that the systematic distortion is nearly spatially 
stationary (i.e. the same throughout the image), then 
A is to a good approximation a circulant matrix. For 
crystallographic problems A will always be circulant 
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because of the lattice periodicity. A crystallographic 
example of this is the thermal factor; the electron 
density of the atoms is broadened by the convolution 
with a Gaussian factor which represents the average 
motion of those atoms. 

Since A is circulant, A-  may easily be calculated. 
This can then be used to find an estimate for Pideal, 

/9idea I "-" A + P o b s  

with an error bound of the magnitude IIa-nll for a 
norm II II (a norm is a measure of the size of a matrix 
or vector; it may be thought of as an absolute value). 
This algorithm is known as inverse filtering (Gonzalez 
& Wintz, 1977). It is notorious for its sensitivity to 
noise. The norm of A-  can be large so that even small 
amounts of noise result in large errors in the recovered 
image. In practice the simple pseudo-inverse 
described here is modified so that its norm is reduced. 
Instead of inverting all non-zero eigenvalues, those 
which are 'small '  by some definition are left 
untouched or set to one. Depending on the exact 
procedure this produces one of a whole family of 
quasi-inverses such as the Wiener filter (Gonzalez & 
Wintz, 1977). 

The linear model is insufficient for missing reflections 

Extending the linear model to include degradation 
due to missing reflections may be done in a simple 
manner. However, even in the best case (the absence 
of noise), this model is not useful since the degra- 
dation matrix produced is its own pseudo-inverse. 

Construction of the degradation matrix starts from 
its eigenvalues. These are either 1 when the phase 
and magnitude are known or 0 when they are not. 
The degradation matrix is then 

D = F * A d E  

Since this construction parallels Dirichlet's integral 
in Fourier integral theory, it will be referred to as the 
Dirichlet matrix (Phillips, 1984). The surprising 
properties of this matrix are summarized below: 

D = (D)", where n is any positive integer 
D + = D, D is its own pseudo-inverse 

D + D  = D D  + = D.  

inverse (which could be D+), we obtain 

P o b s  = D/g idea l  

A-Pobs = A-  Dpideal 

A÷Pobs = F *  A aADFpideal 

A+Pobs = F*AoFp idea l  

A+Pobs = Dpideal 

A-Pobs = Pobs" 

Since the eigenvalue of 0 in D, corresponding to a 
missing reflection, will set the eigenvalue of the prod- 
uct with A-  to 0 no new phase information can be 
found by the pseudo-inverse. Because a new phase 
cannot be created by pseudo-inverses, a value must 
be chosen independently from the restoration prob- 
lem. This chosen phase then has to be refined in some 
way to produce an accurate value. 

Eigenvalue iteration algorithms 

The degradation matrix due to phase errors, as 
opposed to missing phases, can be written in a similar 
fashion to the Dirichlet matrix. The important 
difference is that the matrix does not have constant 
coefficients; instead the eigenvalues depend on the 
current phases. While the linear formalism can be 
preserved, in that a degradation matrix is used, the 
problem is non-linear because the degradation matrix 
is not constant. 

The eigenvalues of the degradation matrix for 
phase error are e i* . . . . . . .  /e i~ , . . . .  • However, as the true 
values for the phases are unknown, it is not possible 
to construct an exact pseudo-inverse. Instead, an 
approximate pseudo-inverse is calculated by compar- 
ing the image with some physical criterion and 
estimating the phase difference. This phase difference 
is used to estimate the new phase, and the process is 
iterated until convergence. Crystallographic criteria 
include positivity, atomicity, connectedness, flat sol- 
vent regions, non-crystallographic symmetry, 
depending on the type of problem (Wang, 1985; 
Tulinsky, 1985). Statistical ideas such as maximum 
entropy can be used to perform this comparison. 

Most of the direct methods and density 
modification methods used in crystallography are 
variants on this theme. 

Any circulant matrix, A, is a pseudo-inverse to D 
provided that whenever D has an eigenvalue of 1, A 
does as well. 

These properties mean that any phase determina- 
tion algorithm based on a linear model for the degra- 
dation due to missing data will not give reliable 
estimates for the unknown phases. Using the linear 
solution, and assuming A ÷ is any linear pseudo- 

Limits to eigenvalue iteration 

Clearly, the convergence of an eigenvalue iteration 
algorithm will depend on the accuracy with which 
the phase error degradation matrix has been esti- 
mated. In order to show convergence it is necessary 
to show that a convergent sequence of estimates can 
be made. 
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Forming a chain of increasingly reliable phase esti- 
mates can be difficult. The problem is that there are 
multiple stationary points (places where the first 
derivative with respect to the phase is zero) in any 
application of a map improvement operator. Because 
of the mean value theorem, if this operator is not a 
constant, it must possess at least a maximum and a 
minimum over the unique range of the phase variable. 
The derivative will be zero at those points so that the 
phase shift on application of the operator will be zero 
there as well. Because the electron density p is real, 
it is possible to find a precise relationship between 
these stationary points. 

To illustrate, let the continuous operator O(p) be 
an operator which generates a better map, for example 
O(p) = p2 (Sayre's equation) for small molecules. If 
the sequence defined by iterative application of O(p) 
converges, at the convergence point the phases of 
O(p) and p must be the same. O(p) can always be 
defined as an operator which restores the observed 
magnitudes. This modified operator will only have 
derivatives in the phase variable. 

O'(p ) = F*m, ArF,,O( ~ ) 

where ~ is the density, p, in circulant form, Fnn is 
the Fourier transform operator, and 

A.=lFobsl/IF,..O(em)l 
is a diagonal matrix restoring the observed data Fobs. 

In these circumstances d[O'(p)-p]/d¢ and 
d[O'(p)-p]/d[Fobs] equal zero at the convergence 
point. Since the Friedel mate, if, is simply - ¢ ,  the 
derivative d[O'(p)-p]/d~ is also zero. The enan- 
tiomorphic phase in P1 is simply generated by swap- 
ping phases with their Friedel mates. Therefore the 
derivative with respect to the enantiomorph phase, 
d [ O ' ( p ) -  P]/dq~enan, is zero when the derivative with 
respect to the phase is zero. This shows that methods 
which only use first-derivative information, or secant 
information, will fail to resolve a mixture of enan- 
tiomorphs. The secant is used implicitly if the phase 
shift after the application of a density modification 
is used as a measure of correctness. 

This does not demonstrate that all phase search 
algorithms converge incorrectly; rather, it shows that 
the simplest fixed-point iteration, the naive applica- 
tion of a function to p and extraction of the phase 
shift as a measure of error, can converge incorrectly. 
This may be remedied by using higher-order deriva- 
tive information, or a direct search over the phase 
variable to ensure that the operation really has con- 
verged to its best value. 

defined). In the linear model described above the 
image is its own degradation matrix. If ~ is a circulant 
of the image p and P is the Patterson then 

P = ~p. 

Finding ~ -  for some approximate density makes it 
possible to find the solution for p such that p and 
the approximate density convolute to give the 
observed Patterson 

p=~+P 

Transference of this to the eigenvalues gives rise to 
the /3 synthesis (Ramachandran & Raman, 1959; 
Main, 1979) 

F~ = (IFobd lFobsl/ tcalc) • 

where F is now the Fourier coefficient. 
Comparison of p with a physical criterion and 

recycling through this procedure defines a fixed-point 
iteration which might converge to an invariant value 
for p. A fixed-point iteration has a small convergence 
radius, but the accuracy and speed if it converges will 
be high. A linear analogy of this process is the iterative 
improvement of the solution to a linear equation 
(Conte & de Boor, 1980). 

This construction may also be used to generate the 
Newton minimizer for the square error in the Patter- 
son. As shown below the square error in the Patterson, 
j d V (Pobs--Pcalc) 2 where Pobs is the Patterson calcu- 
lated with the observed magnitude data Fob s and Pcalc 
is calculated from the calculated magnitudes |Fca~c[, 
is equivalent to the sum ~ ([Fobs[ 2 -  F*calcFcalc) 2. The 
first derivative of this sum is simply --2(IFobs[ 2 -  
Fcal~Fcat~) F~a~c. Dividing the residual by the negative 
of the derivative gives the Newton minimizer, 

Z (I Fobsl ~ * * -- FcalcFcalc)/2Fcalc, 

which is just half the difference between the current 
map and its/3 synthesis. 

An all-real algorithm with global convergence 

Writing the Patterson function as a real-space convol- 
ution, P = ~p, shows that it may be regarded as a 
quadratic function. This is especially clear if one pixel 
at a time is examined. The calculated Patterson may 
be written as 

2 
Pooo = Z p 

Pi-iT-j'k-k' : Z PqkPiT'k' 

Pseudo-inverse algorithm 

The autocorrelation function or Patterson may be 
thought of as the image convoluted with itself (or its 
enantiomorph depending on how convolution is 

which is quadratic. When p > 0  the system of 
equations is also a positive definite system of quad- 
ratic equations. If the squares of the difference 
between the calculated and observed Pattersons are 
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summed the resulting equation is quartic. This quartic 
function has either a unique minimum, a single sol- 
ution, or a pair of homometric solutions as a function 
of any one pixel when the density value of the pixel 
is constrained to be bounded (positive) and real. The 
function is also quartic in the step size for a constant 
search direction (i.e. for a in Pnew=flold-JVO~Psearch). 
Minimizing the quartic function, ~ ( P c a l c  - -  Pobs) 2, over 
a bounded (i.e. positive) density will result in a sol- 
ution for the density which is at worst homometric 
to the true density. This system of equations is com- 
pletely determined because there are equal numbers 
of variables and observations. 

These equations could be solved by trial and error 
with simulated annealing (Corana, Marchesi, Martini 
& Ridella, 1987). However, it is possible to derive a 
numerical equation solver with global convergence 
for this problem. The general algorithm can now be 
described. From some starting.point, either a partial 
structure or a random starting set, a minimization 
direction is chosen. This direction may be either a 
pixel or a gradient direction. The step along this 
search direction which minimizes the square error in 
the Patterson function while meeting image con- 
straints like positivity is found. The density is now 
updated and a new minimization direction is chosen. 
This direction is chosen to be conjugate (orthogonal 
when the second derivative is used as a metric) to all 
of the previously chosen directions and the process 
repeats from the search for the minimum along this 
direction. Since the Patterson may be calculated by 
the convolution of the image with itself, this algorithm 
could find the image and the phases without ever 
leaving the set of real numbers. The details of two 
practical versions of this algorithm are presented 
below. 

The ability to find the global optimum along each 
conjugate search direction is a sufficient condition 
for a conjugate direction search over a bounded 
domain to converge globally (McCormick, 1983). 
Since the conjugate direction algorithm converges in 
polynomial time when this condition is met, the phase 
problem is a member of class P and there exists a 
determinative method to solve it. If a conjugate direc- 
tion line search can find the unique minimum or first 
solution of the square error between the calculated 
and observed Pattersons then it will be globally con- 
vergent. 

H o m o m e t r i c  solut ions  

This algorithm is guaranteed to find a solution. The 
only problem is that the solution found may not be 
the desired one. It is possible to have homometric 
solutions, or multiple densities which have the same 
Patterson. 

The way these arise is especially easy to see in one 
dimension. Any one-dimensional sampled function 

may be fit by an interpolating polynomial. So may 
its Fourier transform (Isrealevitz & Lim, 1987; Lane, 
Fright & Bates, 1987). (Note that an Nth-order poly- 
nomial is uniquely determined by its N zeros, or 
equivalently by its value at N + I  samples.) The 
fundamental theorem of algebra guarantees the 
ability to factor any one-dimensional polynomial 
(Isrealevitz & Lim, 1987), so this polynomial may 
always be factored into N complex factors. The inter- 
polating polynomial for the intensities of the trans- 
form may be found by taking the product of the 
interpolating polynomial and its complex conjugate. 

F ( p )  = ei'~(x - X o ) ( X -  x l )  . . . ( x -  x,,-1) 

F * ( p )  = e - ' ~ ( x  - x * ) ( x -  x * )  . . . ( x -  x * _ , )  

I = ( x -  X*o) (X-  X o ) . . .  ( x -  x * _ , ) ( x -  x, ,_,)  

where a is an arbitrary constant due to origin choice, 
x is a real number corresponding to distance in 
reciprocal space, and xi are the, possibly complex, 
zeros. Any one-dimensional density whose Fourier 
transform is formed by taking one factor of each 
complex pair will have the same Patterson as the 
original density. In the absence of a physical criterion 
like positivity, these 2" solutions are indistinguish- 
able. Any centrosymmetric function, with all real 
zeros in the Fourier transform, is uniquely determined 
because the factors of F(p)  and F*(p) are the same. 
It should be pointed out that with a positivity criterion 
even fairly complicated non-centrosymmetric den- 
sities can be solved; however, the solution may not 
be unique. 

This analysis may make it seem impossible to solve 
anything in higher dimensions as the number and 
complexity of the zeros will increase unboundedly. 
However, because there is no fundamental theorem 
of algebra in more than one dimension, the two- and 
three-dimensional problems are easier than the one- 
dimensional one. A two-dimensional polynomial may 
or may not be factorable and in general is not (Hayes, 
1987; Isrealevitz & Lim, 1987; Lane, Fright & Bates, 
1987). Therefore there will be far fewer indistinguish- 
able, solutions than in the one-dimensional case. As 
in the one-dimensional case, solving for the phases is 
equivalent to factoring the interpolating polynomial 
of the intensities. The polynomial of the intensities 
is always factorable at least once because the 
intensities are the product of F and F*. If the inter- 
polating polynomial of the Fourier transform is fur- 
ther factorable then several densities exist which will 
have the same Patterson (this is not counting trivial 
differences like origin and enantiomorph). In this case 
positivity and chemical information are required to 
differentiate between the solutions. 

Numerically, the situation is somewhat more com- 
plicated as the effects of sampling must be considered. 
This is especially important for crystallographic 
applications where the sampling is dictated by the 
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crystal lattice and is not the choice of the crystallogra- 
pher. Basically, it is possible to sample two different 
densities so that the sampled densities produce the 
same Patterson. As an illustration, the two 4 x 4  
images 

1 1 0 0 
1 1 0 0 
1 1 0 0 
0 0 1 1 

and 

1 0 0 1 
1 1 0 0 
1 0 0 1 
0 0 1 1 

have the same Patterson and the image retrieved by 
a solver is a matter of chance. However the 8 x 8 
images 

and 

1 1 1 1 0 0 0 0 
1 1 1 1 0 0 0 0 
1 1 1 1 0 0 0 0 
1 1 1 1 0 0 0 0 
1 1 1 1 0 0 0 0 
1 1 1 1 0 0 0 0 
0 0 0 0 1 1 1 1 
0 0 0 0 1 1 1 1 

1 1 0 0 0 0 1 1 
1 1 0 0 0 0 1 1 
1 1 1 1 0 0 0 0 
1 1 1 1 0 0 0 0 
1 1 0 0 0 0 1 1 
1 1 0 0 0 0 1 1 
0 0 0 0 1 1 1 1 
0 0 0 0 1 1 1 1 

do not have equivalent Pattersons. However, they are 
nearly equivalent and will be referred to as near- 
homometric images. It should be pointed out that the 
two 4 x 4  images are both samplings of one 8 x 8  
image, which illustrates the dependence of 
homometry on sampling. 

The limit to the convergence of Patterson deconvol- 
ution is the existence of homometric solutions. These 
can either be a true characteristic of the density, or 
can arise due to the finite sampling of the Fourier 
transform. Most of the time a bound on the density, 
like positivity, will resolve these ambiguities. Images 
which are homometric or near-homometric can be 
difficult to solve. Changing the sampling or changing 
the Fourier coefficients included (either by resolution 
range or a thermal factor) may resolve this problem. 
In the worst case, where there are two positive images 
which agree with chemical knowledge, it may be 
necessary to make a phase-sensitive measurement like 
isomorphous replacement or anomalous scattering in 
order to bias the solution into one or the other image. 

Reciprocal-space measure of  error in the Patterson 

So far the assumption has been made that the data 
have been completely observed. Unfortunately, this 
is not often the case with real problems. The observed 
Patterson is not just p convoluted with itself; p has 
also been degraded by the Dirichlet matrix. The 
effects of this convolution cannot be ignored. For 
example there may be no purely positive solution for 
p if unobserved reflections are treated as though they 
had zero intensity. The function ~dV (Pca ic -Pobs)  2 
becomes ~ d V (Pcal¢- DPobs) 2 when there is finite res- 
olution. This function is expensive to calculate in real 
space because of the convolution with D. 

It is possible to show that there is a sum in 
reciprocal space which is equivalent (within a con- 
stant multiplier and an additive constant) to the 

FcalcFcalc square error in the Patterson. The sum, ~ ( * 
[Fobs[2) 2, has proportionate derivatives and the same 
zeros as the square error in the Patterson. 

, d V ( Pcaic -- Pobs) 2 
dFcaicFcalc 

I Pobs) 2 
d 

= d V  . 
d FcalcFcalc 

= f dV2(Pcalc-Pobs) COS(2'rrh.x) 

= 47r( F*~cFcalc- I Fobsl 2) 

d * (F~alcF~a~--lFob~12) 2 
dF¢al¢F¢al¢ 

= 2(F.,cFo  o -I Fob l=). 
The chain rule may then be used to show the 
equivalence of any particular derivative of F¢~c. 
Because this sum is in the eigenspace of D, the evalu- 
ation of the function for finite resolution is trivial. 

This result allows the realistic definition of the 
degree to which the equations are determined. 
Clearly, if there are as many reflections as pixels the 
problem is completely determined. Practically, the 
problem will always be underdetermined because of 
both experimental errors, and the need to oversample 
in order to avoid aliasing (Ten Eyck, 1977). 

Practical algorithms 

Having described a theoretical algorithm for the 
phase problem, it is important to address some of the 
issues involved in the construction of a computer 
program which will implement the algorithm. Two 
implementations will be described. The first of these 
is a pixel-based search. It is relatively expensive, but 
could be implemented at high efficiency on a parallel 
processor. The second is a conjugate gradients search. 
This approach is faster than the pixel-based approach, 
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and the implementation can be written in a vectoriz- 
able fashion. 

Efficient pixel search algorithms 

The simplest way to approximate a conjugate shift 
algorithm is to use orthogonal shifts. This may be 
done by the use of a pixel-by-pixel search. Such an 
algorithm strongly resembles the Gauss-Siedel 
relaxation scheme often used for linear systems of 
equations in that the error as a function of one degree 
of freedom at a time is minimized, and each new 
minimum is immediately used for the next search. 
On conventional serial or vector processors the cost 
of this algorithm is considerably higher than that of 
the general direction algorithm described below, but 
on a sufficiently large parallel machine this sort of 
approach could be implemented with high efficiency. 
For this reason it is useful to describe some of the 
numerical issues involved in the efficient implementa- 
tion of a pixel-based search. 

A useful theorem of Lagrange 

The key to efficient algorithms is the speed with 
which the error as a function of step size along a 
search direction can be found. Lagrange showed that 
the polynomial which interpolates a set of points is 
unique (Conte & de Boor, 1980). That is, if samples 
from a finite-order polynomial are interpolated by 
another finite-order polynomial of the same degree, 
then the original and the interpolating polynomial 
must be the same function. The error in the autocorre- 
lation function is a quadratic polynomial for constant 
search direction. The square error is quartic. The 
practical result from this is that, for fixed cost, the 
error along the search direction can be exactly 
parameterized by a quartic polynomial to the limits 
of the numerical accuracy of the computer. This accu- 
racy may be optimized by the use of Chebyshev zeros 
(Conte & de Boor, 1980). The cost to minimize a 
low-order polynomial is very small, especially com- 
pared with the cost of evaluating the error in the 
Patterson. 

The pixel-based algorithm 

Efficient pixel algorithms utilize both quartic inter- 
polation and precomputation. Since the search direc- 
tion is small in comparison to the map as a whole, 
care must also be taken to minimize numerical error 
in evaluating the difference in the error as a function 
of the step length. Following a general Gauss-Siedel 
recipe, each pixel in the asymmetric unit is adjusted 
to minimize the error. The Fourier transform of a 
pixel is simply e 2~rihx which may be expanded in terms 
of e 2~ix and evaluated in O(N) complex multiplica- 
tions. Given the current Fourier transform of the 
image the new Fourier transform will be Fcurre,t+ 

(O/-Ppixel)Fpixel. The error in the Patterson is then 
evaluated in reciprocal space. It is important to sum 
the differences in the error rather than the error 
because the Fourier transform of each pixel is small 
compared with the whole map and floating-point 
errors will inhibit convergence. It is easy to evaluate 
the pixel transform under a crystallographic sym- 
metry, but it is important only to search pixels within 
an asymmetric unit if this is done. This process is 
repeated several times, until the error is low, and then 
a combination of the minimum cross entropy 
approach (Harrison, 1989) and the beta synthesis is 
used to find a solution. If the process fails, pixel-by- 
pixel minimization is restarted and run to a lower 
error. The cost per pixel is O(N) and there are N 
pixels giving a total complexity of O ( N  2) per optimiz- 
ation step over the whole map. 

Values for the difference in the error are found for 
five steps, and these are fit with the interpolating 
polynomial. The steps should be chosen as the Cheby- 
shev points bracketing a zero step {cos [ ' a ' l / ( N s t e p -  
1)] with I -- 0 , . . . ,  Nstep- 1}. Since one of the Cheby- 
shev points is zero for five points, the difference in 
error for one step is known without any work. Newton 
divide, d differences are used to find the polynomial 
(Cont~ & de Boor, 1980), which is then minimized 
by a quadratic search. Since a small number of 
extremely large peaks is nearly homometric to almost 
anything, it is advantageous to limit positive shifts to 
less than Fooo/Vce~l. Negative shifts need only be 
bound by positivity. 

A general search direction algorithm 

The algorithm presented in the previous section is 
primarily of theoretical interest as large parallel com- 
puters are rare, and the architectures and operating 
systems of those machines which are available are in 
a state of flux. Fast scalar and vector machines are 
common, and this section describes an algorithm 
which may be efficiently implemented on one of these. 
The conjugate gradients algorithm has already been 
described in detail in the literature (Powell, 1977; 
McCormick, 1983), so it is appropriate to concentrate 
on the specific details of a practical implementation 
of this algorithm to Patterson solution. The search 
direction is allowed to be an arbitrary vector, in this 
case the steepest descent direction, and the search 
directions are forced to be conjugate with a recursive 
formula. This algorithm is given in flow-chart form 
in Fig. 1. 

The central problem in the design of a general 
direction algorithm is how to enforce bounds on the 
electron density. With the single-pixel approach this 
is trivial: when the pixel value hits the bound, stop. 
In the case of a general direction search, the optimum 
step length may put some pixels outside the bounds. 
These could be simply truncated, or the step size 
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reduced to the largest step with all of the pixels in 
bounds, but neither of these alternatives is adequate. 

The optimal solution to this problem is to transform 
the search space into another space where the con- 
straints are met automatically. For example, we might 
work in a space defined solely by the phases of the 
Fourier series; all trial solutions would have the same 
magnitudes. In maximum entropy methods the bound 
of positivity is usually maintained by working in a 
Lagrange multiplier space. By working in the A space 
of e ~, shifts are mapped from -oo to ~ to the range 
0 to oo. In test cases it has been found useful to include 
an upper bound as well as a lower one. The log-ratio 
transformation of Shvayster & Peleg (1987) has been 
found to be an effective way to map -oo to oo into a 
range flmin to Pmax- Both of these transformations are 
contact transformations and so preserve the topologi- 
cal structure of the problem. 

The second major problem in a general shift 
algorithm is the breakdown of conjugacy in the direc- 
tions (Powell, 1977). The recursive formula used to 
generate a set of conjugate directions is prone to fail 
if the problem being minimized is not well condi- 
tioned, which can happen when some reflections are 
missing or much smaller than average, or if the search 
along each conjugate direction is not exact. It is 
necessary to monitor the conjugacy of the direction, 
by checking the angle between search directions, and 
reset when conjugacy breaks down. 

Finally, there is the issue of the line search along 
each search direction. This could be done by Lagrange 
interpolation as with the pixel-based search, with the 
range of the search modified to echo the mapping 
function, but this is somewhat impractical as the 
search has to be able to include both very large and 

Input IFobsl,emln' em,x / 
F ~  / 

I 
Choose Random I 

Starting Map 

I 
1st Derivative I 

~70= _ 2~(IF012_ Ft. Fc)Fce2,1hx 
I 

Scale ~Te I 
Save Scaled ~7~ 

I 
Find 

On=- ~7~ +~ On_ 1 

No On=_ V Q 

with approx. 
~72 e 

Save D n ~ , 

I 
Line Search I 
MIn O + Q D n 

Fig. 1. The overall layout of a general direction conjugate gradient 
optimizer as applied to Patterson deconvolution. 

very small steps. It has been found effective to use a 
recursive search, first at a coarse interval and then at 
a fine one around the rough minimum. When a lookup 
table of error values already determined is used, this 
search averages about one Fourier transform per 
recursion (after the initial search) when the intervals 
are halved each time. This makes it possible to deter- 
mine the best shift to arbitrary accuracy, typically 
2 -1° , without excessive cost. 

The major costs of this algorithm are the evaluation 
of the gradient and the error. These both may be done 
with a FFT so that the cost per optimization step is 
O ( S  log N).  

Choice of starting map 

The starting map is chosen to be ' random'.  This 
means that a pseudo-random number generator is 
used to generate an initial density. Pseudo-random 
number generators differ greatly in quality, and it is 
important to use a good one. The common linear 
congruential method (Knuth, 1981) should not be 
used because the short repeat length of these gen- 
erators will make a highly structured starting map. 
In this work the Mitchel and Moore X n _ 2 4  , X55_ n 

additive random number generator was used (Knuth, 
1981). It is also useful to apply a Dirichlet convolution 
followed by bounds constraint to the initial map so 
that the size of the Fourier coefficients for those 
reflections which are zero or unobserved is small. In 
addition, if space-group symmetry is used, it is impor- 
tant that the starting map be forced to have that 
symmetry. 

Choice of search direction 

The choice of the search direction is simple for 
observed reflections, the derivative of ~dV (Pobs-- 
Poa~c) 2 with respect to Fca~ described in the section 
on pseudo-inverses is the steepest descent direction 
and should be used. Unobserved data should be 
treated differently, and maximum-entropy or least- 
squares techniques can be used to fill the missing 
equations. If there is a small amount of missing data 
the data values can just be left to float. Otherwise it 
is important to minimize the 'power' or information 
in the unobserved data. This can be done by calculat- 
ing gradients as though the unobserved data had a 
value of zero. A hybrid of allowing the data to float 
as long as its magnitude is sufficiently small, for 
example [ Fcalc [ < ]-F-~, is also useful. The error should 
only include the observed reflections. The ~ function, 
defined below, is used to scale the derivative between 
-1  and 1 which prevents false convergence when the 
magnitude of the derivative is small. Space-group 
symmetry is maintained at this stage by requiring that 
the gradients have the correct symmetry in real space. 

A more subtle numerical problem must also be 
treated in the choice of search directions. Since the 
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operations are defined on a grid, the effects of the 
Fourier transform of the grid must be minimized. 
Because of the sampling in real space, the calculated 
Fourier transform has errors caused by contamination 
from high-frequency terms not explicitly included in 
the summation. These effects are known informally 
as 'fold-over' and their effects on the FFT calculation 
of structure factors are well known (Ten Eyck, 1977; 
Sayre, 1951; Brillouin, 1962). 'Fold-over'  effects can 
be strong enough to alter convergence even when the 
magnitudes are calculated from an image on the same 
size grid as the inversion. From multiple runs on 
varying grids, it appears that 'fold-over' error is a 
major cause of failure. The well known trick of forcing 
convergence in reciprocal space via an artificial ther- 
mal factor (Ten Eyck, 1977) is useful here. Since the 
gradients are calculated with the Fourier transform 
it is easy to add a small thermal factor to the gradients. 
If the high-resolution data are accurate, it is useful 
to make the thermal factor smaller as the error minim- 
izes. The minimization is thus done in e x p ( - s  2) space, 
with little 'fold-over', but the error evaluation is still 
in a normal space. There are an infinite number of 
convergence factors in addition to the thermal factor 
(Young, 1988; Champeney,  1987; Phillips, 1984) and 
it is likely that a better choice can be found. 

Enforcement of  conjugacy 

While almost any of the iterative formulae for 
enforcing conjugate directions (McCormick, 1983) 
are better than steepest descents, in general the Polak- 
Ribeire formula works best (Powell, 1977). In this 
procedure each search direction is the sum of the 
current steepest descent direction and a constant 
multiple of the last search direction. 

d o = - V F o  

di+l = - V  Fi+l + fldi 

V Fi+IV F/+I - VF/+IV Fi 

VF, VF, 

where di is the search direction and F~ is the function 
value. 

This formula fails in two major ways (Powell, 
1977). It can force the search direction to be a non- 
descent, and will produce a fl which gives zero search 
directions when the gradients are nearly parallel. 
These conditions should be monitored and appropri- 
ate corrections taken. Since the dot product of the 
gradients between steps is found in order to find fl, 
monitoring for parallel gradients is simple. When the 
gradients are nearly parallel for several steps in a 
row, an approximate second derivative is used to 
conjugate the shifts explicitly (Angel & Jain, 1978). 
This approximate conjugation can be used on its own, 
and is similar in convergence to the Polak-Ribiere 
form, but it is more expensive to calculate. The 

diagonal terms of the second derivative of the square 
error in the Patterson are just the calculated Patterson; 
this is circulant in form so the FFT can be used for 
efficient calculation. 

d ~+ l = d i +  l - ~di 

= di+ 1 Pdi / di Pdi 

where P is the Patterson in circulant form. 
The angle between the search direction and the 

gradient is also monitored, and the search direction 
is reset to the gradient when this angle is larger than 
Ir/4. 

Maintenance of  constraints 

There are three constraints which are used. The 
first is a lower bound on the density. The second is 
an upper bound. The third is a normalization con- 
straint. With X-ray diffraction data the lower bound 
is zero; the upper bound depends on the image and 
for molecules five to ten times Fooo/VceH is an 
appropriate range. 

In order to maintain the upper and lower bound 
constraints the log ratio mapping of Shvayster & Peleg 
(1987) is used. This can be broken into two func- 
tional steps, a scaling step and a mapping step. These 
are referred to as gr and @. The total mapping is 
s - -@[~F(p)]  with the inverse 1/'f--l[(~)--l(s')], where 
s' is the modified output of the initial mapping. 
Note that without modifying the density 
g r - l (@- l{@[~(p) ]} )  is just p. For a pair of bounds, 
Pma, and Pmin, to the electron density p with Pmean as 
the mean value, 

~(p)_P-P . . . .  

gmean 

@(t~) = log [ ~'b - lp' (pmin) ] 
1/'r (Pmax) -- @ 

@-l(S)=[~Ir(Pmax~ es+vl~'(pmin) ] + e  ~ 

1/'t-1 ((~0-1) = 19 . . . .  ~ 0-1 -~- P . . . .  " 

W h e n  Pmean is zero, replacing it with [Pmin[ or  (Pmax-  
Pmin)/2 will work. 

This mapping has a floating scale. If the 
modification of p wanders outside the bounds it is 
always remapped to the bounds. The scale between 
the map and the data will wander if it is not con- 
strained. Without a scale constraint the process does 
not converge. This constraint is maintained by requir- 
ing that the output density have a constant Fooo. This 
is done by multiplying the map by 

Fo~(O00)/F.,e(O00). 
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Line search 

Having defined a search direction and described a 
mapping which will keep the search in a bounded 
range of density values, we now describe the process 
of searching for a minimum error. Starting from a 
map po, the current best point, a map p(D, a) where 
D is the search direction and a is the length along 
D is generated, a is a scalar so that a one-dimensional 
search for the next minimum can be performed. Since 
the calculation of the error between the calculated 
and observed Pattersons is expensive, it is best to 
perform first a coarse search and then a fine search 
around the approximate minimum. If a table of error 
values as a function of a is kept and the search step 
is halved each time the cost of performing this search 
can be kept low. 

The mapping functions ~g and 4, defined in the 
last section, are used in the generation of p(D, a). 
These are first applied to Po, giving So = d~[~(po)]. 
So has a D  added to it, and the new map p is found by 

p(O, a )=  ~ - ' [  ~F-'(So+ aD)]. 

The Fourier transform of this map can then be used 
to find the error in the Patterson. 

Convergence check 

When the scaled square error in the Patterson 

(Pobs- Pcam~) 2 d V 

(Pobs- Iooo/V~e.) 2 d V 

is less than about 10 -4 the image has always been 
correct in model systems. This corresponds to a crys- 
tallographic R factor of about 0.001. Clearly such 
low numbers are not attainable in the presence of 
experimental errors. Therefore it is useful to consider 
convergence checks which are not dependent directly 
on the square error. 

This is by no means a settled issue and the limita- 
tions of eigenvalue iteration discussed above apply 
to most convergence checks. One general scheme for 
a convergence check is to use a map improvement 
operator, and show that little or no change in the 
phases occurs. Unfortunately, the phase shift upon 
application of an operator to the density is not a 
reliable indicator of the accuracy of the phase set. If 
the solution and the operator are correct then little 
phase shift should occur, but it is not difficult to find 
incorrect phase sets which also give rise to limited 
phase shifts. In particular, the obvious map improve- 
ment operation of restoring the observed magnitudes 
to the structure factors, making the unobserved reflec- 
tions zero, and applying positivity in real space is 
prone to form mixtures of enantiomorphs. This check 
should only be applied infrequently if there is any 
difficulty resolving enantiomorphs. With this caveat, 
the restoration of observed magnitudes, or even 

simply forcing unobserved data to zero, is an effective 
check. 

Examples 
In order to demonstrate that conjugate shifts are an 
effective algorithm, three examples will be given. The 
first of these is the reconstruction from intensities 
only of a small two-dimensional image. This shows 
that when the data are exact and complete the 
algorithm works. The second and third are the recon- 
struction from observed X-ray intensities ofa  15-base- 
pair oligomer of DNA (Miller, Harrison, Appella, 
Wlodawer & Sussman, 1988) by the single-pixel 
algorithm and the general direction algorithm. This 
demonstrates that practical structure solution is 
possible in the presence of experimental error and 
incomplete data. 

The duck 

Fig. 2 shows the process of reconstructing a duck 
from its intensities. The image is on a 15 by 30 grid, 
with 450 degrees of freedom. Nearly all of the 
intensities are non-zero. An initial image was chosen 
with a random number generator, with the pixel 
values chosen to be between 0 and 2Fooo/Vce,. Each 
individual pixel was chosen at random, rather than 
choosing the phases at random and using the observed 
magnitudes followed by truncation. The scaled error 
converged from 0.994 to 3 x 10  -13 in 49 steps, which 
is far less than the theoretical maximum of 450 steps. 
The total run time was about 5min on a Silicon 
Graphics Personal IRIS. The image has a density 
range from 0 to l, and the density limits were 0 and 

Cycle 0.9944762 error Cycle 20 8.3918e-3 error 

11 

Cycle 1 .2075115 error Cycle 30 1.9419e-3 error 

I • 
Cycle 10 1.87688e-2 error Cycle 49 3.282e-13 error 

Fig. 2. The restoration of the image of a duck from its Fourier 
magnitudes only. The initial starting point is the output of a 
random number generator, and the final image is accurate to 
well within single-precision accuracy. 
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1.2. The exact  value for the upper  bound  was not 
critical and convergence occurred when it ranged 
from 1 to about  1.8. 

A real molecule 

The crystal-structure solution of  a 15-base-pair  
ol igomer of  D N A  by min imum cross ent ropy and 
direct methods  has been described elsewhere (Har-  
rison, 1989; Miller et al., 1988). The D N A  crystallizes 
in space group I222 with a unit cell of  a =36 .99 ,  
b = 53.7 and  c = 101.6 ~ .  The data  used in the pre- 
vious de terminat ion  were about  75% complete  to 
3.0 ]k and were used in these trials. The missing data  
are in the form of  a wedge in reciprocal space which 
tests the ability of  the algori thm to cope with system- 
atic missing data.  In both cases a grid of  30, 50, 100 
was used; this is about  2/3 the Nyquist  limit for 3 A. 
/ -center ing zeros were t reated as observed zeros. Figs. 
3 and 4 show the results of  both the single-pixel 
algori thm and the general  search algori thm. These 
maps  can be compared  with Fig. 3 of  Harr ison (1989). 

The single-pixel run for the D N A  was per fo rmed  
in two passes on a Cray X M P  2-4. The initial model  
was a constant  density of  3Fooo/V~H. The first pass 
was six cycles to an error  of  0.0361, fol lowed by a 
run of  min imum cross-entropy optimization and /3 
iteration. The second was a fur ther  five cycles to an 
error of  4 x  10 -5. The Fooo was 1537, which is about  
1.5 times the true value. This and the absence of  an 
upper  bound  allowed the error to get deceptively low. 
The initial pass required 1001 min c.p.u, time, and 
the second pass required 838 min for the total of  

Fig. 3. A 20/~ slice through the electron density map of a 15mer 
of DNA found by the single-pixel algorithm. The map is one 
and a half times the a cell length on the vertical and one times 
the b cell length on the horizontal. The molecule runs diagonally 
from the upper center to the lower right corner. 

1839 min. There was little difference between the out- 
put  map  from the two passes. The 222 symmetry  was 
enforced by operat ing with the P222 space-group-  
specific t rans form of  a single pixel and optimizing 
over a single asymmetr ic  unit. It is clear f rom the 
map that significant phase  error  remains,  but  the map  
is of  better quali ty than  that  originally used to solve 
the structure. 

The general  direction run was done on a MIPS  
M/120,  which is about  60 times slower than the Cray  
for vectorized code. F rom a r andom map  with density 
values between 0 and 2Fooo/Vceil, the crystal sym- 
metry and a Dirichlet convolut ion were applied,  the 
results were t runcated  when less than zero and 548 
cycles to an error  of  0.0167 were run in 2384 c.p.u, min 
which would  correspond to about  45 min on the Cray  
X M P  2-4. The p rogram was run more than required 
for convergence,  as the error  was 0.019 after  100 
cycles. The Fooo was re-evaluated from the native 
Patterson to be 1004 so that  the errors are more 
representat ive of  the error  in the map  (if  zero is used 
for Iooo in the Pat terson synthesis,  then the lowest 
negative is approx imate ly  -looo/Vcen). The lower- 
density b o u n d  was zero and the upper  was 0.08, which 
corresponds  to 12Fooo/V~en. Zeros due to the l- 
centering were considered as observed zeros and 
counted in the error,  while the unobserved da ta  were 
simply restrained in magni tude.  The 1222 symmetry  

Fig. 4. The same 20 A section as in Fig. 3. This density was found 
by the general direction search without the help of minimum 
cross-entropy processing. The molecule runs from the lower left 
corner to the upper center. Fewer centrosymmetric artifacts are 
visible than with the single pixel map. The two phase sets can 
be aligned on each other by origin shifts, but the maps have 
been left in their original reference frames to emphasize the 
arbitrariness of origin and enantiomorph when only the Fourier 
magnitudes are used. 
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was enforced in real space by performing the 222 
symmetry operations on the gradient. The map shows 
less density accumulation on the symmetry axes than 
the single-pixel map and is of higher quality than the 
original map. 

The map found by the general direction program 
(Fig. 4) is better in quality than the one found by the 
single-pixel search program (Fig. 3). The general 
direction program runs much faster, demonstrating 
the importance of algorithm design. While it would 
be possible to improve the performance of the single- 
pixel algorithm, at least in terms of map quality, on 
a serial or vector processor the relative cost weighs 
against it. However, both algorithms are considerably 
more effective than simulated annealing; tests on both 
pixel-based and general-direction-based annealing 
variables (Corana et al., 1987) with two-dimensional 
test images suggest that the convergence of simulated 
annealing would be at least a thousand times slower 
than the pixel search. 

Unresolved issues 

The examples presented above demonstrate the 
potential of the algorithm. Several critical issues 
remain to be solved. The best way to choose Fooo, 
Pmin and Pmax has not been found. Currently, the 
Patterson synthesis can be used for an estimate of 
Foo0, but the best upper bound for the density must 
be found by trial and error. The effects of error in 
these choices is still not thoroughly understood. The 
manner in which space-group symmetry is enforced 
is sub-optimal. A major unresolved issue is the effect 
of different grids and data resolutions on convergence 
with real data. It is clear that 'fold-over' errors can 
prevent convergence. Various convergence functions 
(Young, 1988; Champeney, 1987; Phillips, 1984) 
exist, and combined with oversampling should reduce 
this effect. Finally, the issue of a convergence check 
is unsettled. Most convergence checks will fail for 
precisely the same reason that most density 
modification schemes will fail. Naive application of 
an operator like positivity, solvent flattening or squar- 
ing the map will fail to resolve mixtures of enan- 
tiomorphs. For the moment the best convergence 
check is to use several starting points and show that 
the solutions are similar. In addition, at this time, it 
is important to apply the programs to problems where 
molecular replacement could almost be used. By 
building confidence with essentially direct-method- 
assisted molecular replacement, it will be possible to 
develop the expertise needed to tackle completely 
new structures. 
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Abstract 

A new recurrence relation between the reduced matrices of 
the irreducible representations of the rotation group is 
proposed, which permits their accurate computation for 
high orders of the representation. 

This work was motivated by the appearance of numerical 
divergences during the computation of the fast rotation 
function (Crowther, 1972). The origin of this behaviour was 
found to be the numerical instability of the recurrence 
relation used to compute the rotation matrices, for moder- 
ately high angular momenta and a wide range of angles. 
Overflows were in fact detected for expansions involving 
spherical harmonics of order j -> 74. 

In an irreducible representation of the rotation group of 
dimension 2j + 1, the rotation parameterized by the Euler 
angles (a,/3, 3') is represented by the matrix (Brink & 
Satchler, 1975) 

D~.(a,/3, y ) = d ~ . ( / 3 ) e x p - i ( m a + n T ) .  (1) 

The reduced matrices d~ ,  are determined by means of 
the 'triangular' relationship (Altmann & Bradley, 1963) 

[( j  - m )(j + m + 1) ]'/2 d~,.(/3 ) 
+ [( j  - n + 1)(j + n)]'/2dL+,,.-l(/3) 

+(m-n+l )co t ( /3 /2 )d~+, , . ( /3 ) ,  (2) 

starting from the analytical expression 

d~j(/3) = (2 j ) ! / [ ( j  + m)!(j - m)!],/2 

x sin (/3/2) j-m cos (/3/2) ~+m. (3) 

Only the elements with - n - <  m<-n, n>-0 have to be 
evaluated. According to (2) and (3), ( j  - n + 1), ( j  - n + 2)/2 
elements are necessary to determine d~ , .  The number of 
operations grows as j2 for small values of n, and the propa- 
gation of errors causes the observed divergences. 

The unitarity of the representation implies the following 
orthogonality condition for the reduced matrices: 

J 
d ~ , ° ( / 3 ) d ~ , , . ( / 3 )  - 8 , . . . , ,  = O, 

n = - - j  

-j<_ m, m'<-j. (4) 

Therefore, the magnitude of the errors produced by the 
numerical calculation may be described by computing the 
maximum, when m and m' are varied, of the absolute value 
of the left-hand member of (4), for given j and/3. This is 
shown in Fig. 1, for j-< 60, which are the values used in 
the standard program of Crowther. Although big enough, 
such er,:ors do not produce overflows in most computers 
and are seldom detected. 
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Fig. 1. Contour levels of the maximal deviation from the orthogon- 
ality conditions, of the reduced matrices d J(fl), computed with 
the recurrence relation (2). 
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